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A HAMILTONIAN APPROXIMATION TO SIMULATE 
SOLITARY WAVES OF THE KORTEWEG-DE VRIES EQUATION 

MINGYOU HUANG 

ABSTRACT. Given the Hamiltonian nature and conservation laws of the Korte- 
weg-de Vries equation, the simulation of the solitary waves of this equation by 
numerical methods should be effected in such a way as to maintain the Hamil- 
tonian nature of the problem. A semidiscrete finite element approximation of 
Petrov-Galerkin type, proposed by R. Winther, is analyzed here. It is shown 
that this approximation is a finite Hamiltonian system, and as a consequence, 
the energy integral 

I(u)=1 (X+U3) dx 

is exactly conserved by this method. In addition, there is a discussion of error 
estimates and superconvergence properties of the method, in which there is no 
perturbation term but instead a suitable choice of initial data. A single-step 
fully discrete scheme, and some numerical results, are presented. 

1. THE HAMILTONIAN NATURE AND CONSERVATION LAWS 

In this paper, we shall consider the following problem for the Korteweg- 
de Vries equation: 

ut - 6uux + uxxx = 0, xER, t>O, 

(P) u(X +'1, t) = u(x, t), 
u(x, 0) = uo(x) (a prescribed 1-periodic function). 

To study the Hamiltonian nature of problem (P), we introduce the following 
function space with I = [0, 1], 

H m = {v E Hm(I); v_(0(x + )=v(i) , 

and the functional 

H(u)=f (x +U3) dx, 
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where u( a O'u/lx'. Define 

00 

c5/&u := Z(-1)k (d/dx)kO/Ou(k); 
k=O 

then cH/cu = 3u2 - uX, and problem (P) is equivalent to finding a map u(t) 
from R+ to HpM such that 

p 

(P') ut=hJH/l5u, J=O/Ox. 

Since 

lo bu ox ( u )dx = 0 , u Hp 

then for any solution u = u(t) of (P') we have 

dH(u) / u & H c HH 
d I --d 1aHdx=5 dx =0, 
jdtc5u Ot x~I0 yto-x c u- 

i.e., u = u(t) satisfies the energy conservation law: H(u(t)) = const. 
For any functionals T and S: Hm -, R, define 

p 

I cT 0 3S 
{T, S} := - - -)--dx (Poisson bracket), 

which also is a functional defined on Hm . It can be verified that the operation 
p 

{ , } has the following properties: 

(i) {T, S} =-{S, T}, T, S:Hm- R; 
(ii) {H, aT+bS} = a{H, T}+b{H, S}, a, b E R, H, T, S:Hmp R; 

p 
(iii) (Jacobi identity) {{T, S}, H} + {{S, H}, T} + {{H, T}, S} = 0, 

H, T, S:Hm -, R. 
p 

Lemma 1. The functional T(u) is a first integral ofproblem (P') if and only if 
{T, H} = 0. 

Proof. Since, for any solution u = u(t) of (P'), 

dT(u) _fTOu f15TO Hd 

dt -] 7~j~dx] y- ~-dx ={T~ H}~ 

the lemma follows immediately from this identity. 0 

For a given functional H: Htm -, R, a family of mappings GH containing a p H 

parameter t can be determined through (P'): 

m u(t) = GtUO , U EHp, 

which is called the phase flow corresponding to H. By Lemma 1 and the Jacobi 



HAMILTONIAN APPROACH TO THE KORTEWEG-DE VRIES EQUATION 609 

identity, we have 

Theorem 1. Suppose T and S are two first integrals of (P'). Then { T, S} is 
also a first integral of (P') . Therefore, the set offunctionals consisting of all first 
integrals of (P'), equipped with the operation { , }, forms a Lie algebra RH. 

Let L = -82/8x, + u (Schr6dinger's operator). P. D. Lax proved in [5] 
that every eigenvalue A = A(u) of the Sturm-Liouville problem Luf = lf is 
a first integral of (P'), i.e., A(u) E RH. In fact, (P') has infinitely many first 
integrals, such as 

Io(u) = udx, I,(u) u= dx, I2(u) =f(2 +U )dx. 

From the form (P') and the properties indicated above we see that prob- 
lem (P) is of the same nature as a Hamiltonian system of ordinary differential 
equations (see [1, Chapter 8]), which can be viewed as an infinite-dimensional 
Hamiltonian system. For a given functional H: Hm -- R, we call J5H/3u the 
velocity vector of the phase flow GH with Hamiltonian function H. For any 
IS E RH, the phase flow determined by the equation ut = JhIs/du commutes 
with G', i.e., G' G = GWGt. 

S s 

2. THE HAMILTONIAN APPROXIMATION OF PROBLEM (P) 

In this paper we seek to develop a numerical method for simulating the soli- 
tary waves of the Korteweg-de Vries equation which maintains the Hamiltonian 
nature of this equation. We believe that such a method will be able to preserve 
as much as possible the global properties of the original problem, for example, 
the energy conservation property 

dH(u) d (u 3 
dt dt 0 

which we consider to be particularly important. As is known, the conventional 
finite difference method (see [7]) and the Galerkin finite element method (see 
[8]) do not preserve the energy. In this section, we shall show that the Petrov- 
Galerkin finite element discretization is an appropriate way to derive a numer- 
ical method for problem (P) which faithfully preserves the Hamiltonian nature 
and the energy conservation property of the continuous problem. 

Let Lh: O = xO < xl < < XN = 1 be a partition of the interval I = [0, 1], 
I = [xi- , xi], and h = maxl<j<N(xj - xj_I). For a given integer r > 2, we 
introduce the spaces 

Vh={v E Hp; vII E Pr(Ij) j =1,2, ... 5 N}, 

H4 W {wE Hp'; wl E Pr+,(Ij), j _ l, 25 ...,5 N}5 

where Pr(Ij) represents the set of all polynomials on I, with degree < r. It is 
easy to see that dim Vh = dim Hh = (r - l)N. 



610 MINGYOU HUANG 

Based on the chosen pair of spaces Vh and Hh, the Petrov-Galerkin finite 
element approximation of problem (P) is defined as follows: find a map u (t) 
from R+ to Vh such that 

(h~ h ((h2 Wh h h )= WhEHh 
(ph) (t W)+3(),wX) + (UX, xx) w EH 

Here and hereafter, (, ) and stand for the inner product and the norm 
in L2(I), respectively. 

For the purpose of the subsequent analysis, we introduce a linear integration 
operator G: Hm , Hm +1 uniquely determined by 

p 

(2.1) (Gf) = f-f?, (Gf)? = f, f E Hp, 

where f? = (f, 1) is the mean value of f on the interval I. In fact, Gf has 
the following explicit form: 

(Gf)(x) = f(s) ds - fox + 3f?O - ; f(s) ds dx. 

From the definition of G, we see that 

(2.2) (Gfi, f2) = (Gf1, (Gf2)x) + Jje0i2 

(2.3) (Gf, f) =(f0)2. 
0 0 1 

Moreover, with Hm= {v E Hp; v? = (v, 1) = 0} and Vh = Vh n H, we 
have 

(2.4) (Gf1, f2) = (Gf1, (Gf2)x) =-(f1, Gf2) for any f, f2 E Hp, 

i.e., G is a skewsymmetric operator on Hm . It can be verified that G is a one- 
p 

0m 0~ m+1 
to-one map from Hp onto Hm , and its inverse is precisely the differential 

p 
operator J = O/9x. 

Theorem 2. The solution uh = u (t) of the semidiscrete problem (Ph) satisfies 
the following conservation laws: 

(i) Io (U(t)) u hdx = const for t > 0, 

(ii) I2(u (t)) = f ((2 + (uh)3) dx =const for t > O. 

Proof. Since 1 E Hh, by choosing w h = 1 in (ph)' we have 

+fl uhdx = +-(uh, 1) = (u, 1) = O, 

so that (i) holds. To verify (ii), we choose wh = Gu h E Hh; then 

(u h, Gu h) + 3((u ) , (Gu) )+ (u, (Gu^) ) 0 
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Since (u h)? = (uh , 1) = 0, (uh , Gut) = 0, and (Gu )h = Ut, because of (2.1) 
and (2.4), we obtain from the above equation 

dtI2 (t))= h d {(( )3, 1) + j(ux ux)} =0 , 

i.e., (ii) holds, and the theorem is proved. 0 

Theorem 2 tells us that the conservation laws IO = const and I2 = const of 
problem (P) mentioned in ? 1 are faithfully preserved by the Petrov-Galerkin 
finite element approximation (Ph), where I2 = H represents the energy of the 
continuous system (P). 

It is not difficult to see that the discrete problem (Ph) is a system of ordinary 
differential equations. After some careful manipulations, we find that (Ph) is 
precisely a finite Hamiltonian system. To show this, we introduce a kind of 
second-order discrete derivative dxruh UE VJ for any given function uh in V*, 
which is uniquely determined by 

(d~h h h h h h 
(dx"x , V ) =-(Ux, vx) Vv E Vh. 

By choosing vh = 1 , we see that (dh h 1) = , i.e., dUh E V = Vh n H;. 
Now let uk = u (t) be a solution of problem (Ph) . Since dx"xu Uht E Vh, by 
using (2.1) and (2.2), equation (Ph) can be rewritten in the form 

h hi h2 h + h hh (2.5) (Gut v*)3((u*) v*+ (dxxu , v ) 
V 

?' 
Vh 

0 

In addition, let PO be the L2 projector from L2(I) into its subspace Vh, and 

let Gh := POG; then for any fh g E Vh 

(Ghfh, gh) = (PoGfh), g) =(Gfh, gh) =(f,h Gg h)_=(f, Ghggh) 
0 

which shows that Gh is a skewsymmetric operator on Vh. In terms of these 
notations, we find that (2.5) is equivalent to 

Gh(u )t = 3PO(ud2 dxu 

It can be verified by calculation that 3PO(uh)-d duh = 5H(Uh)/1Uh . Therefore, 
the solution u (t) of (Ph) satisfies 

(2.6) Gh(u )t = cH(u )/56uh 

0 0 0 

Assume that PoHh = Vh; then Gh restricted to Vh is a one-to-one mapping, 
and the inverse G1 = Jh exists, which also is a skewsymmetric operator on 

0 

Vh . We thus obtain a new version of (Ph)' 

(2.7) (uh)t Jh6H(u h)/U. 
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For any two functionals T, S: Vh -+ R, a discrete analogue of the Poisson 
bracket, introduced in ? 1, can be defined by 

{T,S}:=J -JA- dx, 

and most of the analysis and conclusions in [5] can be carried over to the 
approximation problem (Ph)* Comparing the form (2.7) of problem (Ih) with 

(P), we see that the Hamiltonian nature of problem (P) is maintained in the 
discrete approximation (Ph). For this reason, we shall call (P.) a Hamiltonian 
approximation of problem (P). 

3. ERROR ESTIMATES AND SUPERCONVERGENCE 

OF THE APPROXIMATE SOLUTION 

The discrete approximation (Ph) is identical to one of the methods proposed 
in [9], where H0 and H' estimates for the error e = u - uh and its time 
derivative et were derived. However, in the bound obtained for e, there exists 
an unknown term 11Gw* (0)112. In order to achieve superconvergence, D. N. 
Arnold and R. Winther in [21 altered the discrete equation by a perturbation 
term. In this section, we obtain superconvergence properties of the unperturbed 
equation (Ph) by suitable choices of the initial data. 

1 2 Since G(H,l) = -lI, and G(Vh) = Hh, problem (P.) can be formulated a 

follows: find a map u h(t): [0, T] -- Vh such that 

(3.1) -(Gut . v ) + 3((u )h ) + ao(uAV)0 Vv EV A 

where ao(u, v) = (u, vu,) and uh (0) assumes a prescribed value in V-. In 
0 0 

order to be sure that the problem has a unique solution, we assume PaHh = VA; 
then the coefficient matrix in front of the time derivative in (3.1) is nonsingular. 

An elliptic projector P,: Hp - VA is defined by 

A A 
ao(P - f, v)= 0 for anyv EVhI 

W, O, 1) = (0, l)* 
Let u(t) = u(x, t) be the exact solution of (P), which is assumed to be suffi- 
ciently smooth. From standard results for the Galerkin finite element method 
for elliptic equations, we know that 

(3.2) P,(P u- u) (k(t)1,5 < C(u)h ,s -(r-2) < s < I, k >0, 

(3.3) tI(Pu- U)(t)rrL (I < C(U)hr 

wher +(*>(t) - (E)k+(t). Moreover, the following superconvergence estimate 
at nodes holds (see [61): 

(3.4) [(P,u- u)(x,. t I1 < C(u)h 2-2 when r > 2. 
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Here and hereafter, 11 Ils represents the norm in the Sobolev space Hs(I), 
s > 0, and 

1 s sup (.,v) 
O#VEHS IIvIIs 

In the subsequent analysis, we shall use the inverse properties of { Jh} , such 
as 

llhIv < ChCIIv hllI VVh E V 

It is well known that such properties can be guaranteed by assuming the family 
{Lh, h > 0} of partitions to be quasi-uniform, i.e., there is a constant c > 0 
such that h1 = x. - xj_l > ch for I < j < N. 

To begin with, we discuss the case u (0) = P1 u(0) and prove the following 
pointwise error estimates. 

Theorem 3. Suppose that (P) has a unique solution u(t) for 0 < t < T, u(t) is 
sufficiently smooth, and {Lh, h > O} isquasi-uniform. Assume u (0) = Phu(0). 
Then for small h > 0, the discrete problem (Pr) has a unique solution uh(t), 
0 < t < T, which satisfies 

(3.5) IIu(t) - U (t)IL0 (J) < C(u)hr, 

h r+d (3.6) |u(xj, t)-u (xi, t)I < C(u)h , i = 1, 2, ...N , 

where d = 0 for r = 2, and d = 1 for r > 2. 

Proof. Set z(t) = u(t) - P1u(t) and w (t) = PIu(t) - uh(t). Then e(t) = 

u(t) - uh(t) = z(t) + w (t), where wh(t) E Vh satisfies 

h h.a"h h h h22h h 0 
(3.7) - (GW , a h vh) = (Gzt, vh) + 3((u ) -U, V ) VV E Vh. 

Since (Gw , wh,) =0 , choosing vh = w h in (3.7) yields 

Ild h 2 h h 2 u2 h 
h d2 hW^||2 h(GZ wt) + 3((u ) -2uh, wt 

Noting that (u)2 -u = (w )2 -_2(Plu)w - (Pu + u)z, we have 

I d h 2 d 
(Gzt, wh h(Gz 

(3.8) d h 
)3+ 1)d-t3((Pu)w , W )- 3((P1u + u)z, w )] 

+ 3((P1ut)wh , wh) + 3((P1u + u)zt + (Put + ut)z, wh) 

Without loss of generality we may assume 

llwh(t)IIj < 1 for 0 < t < T. 

In fact, this assumption can be removed by the later estimates combined with 
the inverse inequalities in Vh (see [8]). By the smoothness of u(t) and estimate 
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(3.2), 1lP1uII1 and IIP1ut I are uniformly bounded for 0 < h < ho in 0 < t < 

T. Note that w (0) = 0 by the choice of u (0). Integrating (3.8) from 0 to 
t, we obtain in the usual way 

IIwh(t)112 < C {IIz(t)II I + lZ(1) (t)jj2_ + |lGwh (t)II 

+t' 1lz(5)l2 +z(l1) 2 (2) ()112 (3.9) + j [Iz(s)1K-1 + IIz~ (s)II.1 + liz ()I 

+IlGwh (s)II2]ds} 

where C is a constant which does not depend on h, but depends on u and its 
derivatives. 

To derive an estimate for Gw h(t), we choose vh = PoGwh in (3.7) and 
obtain 

I 
dt PoGw 12= ao(w h, PoGw )-(Gzt, PoGw h-3((u ) u , PoGw ) 

2 (1) 2 + lwh2 < 
C(IIzII2 + /iz I).,. + 1Gw112). 

Thus, by integration we have 

IIPoGw (t)l1 < C;f[IIz(s)II21 + Ilz( )(sII?1 + IIGw(s)I2] ds 

and 

11Gw (t)II < 2IPOGw h(t)112 + 211(I -PO)GW(t)|| 

(3.10) < C{ h IGw (t)112 + j [||lz(S)ll-2 + lIz( S)2 

+ IlGw (s)112]ds}. 

Since II 11w < 
? IIGwh II IIwx I + I Gw I I, combining (3.9) and (3. 10) and applying 

Gronwall's lemma, we find for h > 0 small enough, 

h|Gwh( C{IIz(t)II2 () 2 

+ IIIZ(S)112 II + IIz(1 1 z(2)(S)11I2?ds} 

which shows by (3.2) that 

(3.11) IGwh (t)Il2 < C(u)h r+d, 

where d = 0 for r = 2, and d = 1 for r > 2. In view of 

||Wh (t)|| (I IL < CIIGWh(t) 112, 

the desired estimates (3.5) and (3.6) can be derived from (3.11) combined with 
(3.3) and (3.4), respectively. o 
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Prom estimate (3.6), we see that the approximate solution has a supercon- 
vergence property at the nodes, with one order higher when r > 2. Following 
a referee's suggestion, we now improve this result. We shall use the technique 
of quasi-projection, introduced in [3] for linear second-order parabolic and hy- 
perbolic equations. In [2], quasi-projection was used for the Korteweg-de Vries 
equation. Since we intend to conserve the energy integral and the Hamiltonian 
nature, we use this technique only for choosing a suitable initial data, unlike 
[2], where the discrete equation is altered. 

h h Set V(t) = P1u(t), Zo(t) = u(t) - V(t), and W, (t) = V(t) - u (t). The 
0 

quasi-projections Zj(t): [0, TI ]_ Vh, j = 1, 2, ... , are defined inductively 
by 

h EV h h,0 <tT 
ao(Zj, v ) = (GZj(1 -6uZj11, vh) v E Vh h 0 < t < T. 

We shall use the sum Z, (0) + Z2(?) +. * * + Zm(0) to modify the previous initial 
data V(O) =P1u(O),i.e.,wechoose uh(O)= V(=)-[Z1(?)+Z2(?)+-*+Zm(?)1 
where m =[(r- 1)/2]. 

The improved superconvergence result is then as follows: 

Theorem 4. Assume (P) and {Lh, h > 0} to be as in Theorem 3 and u (0) = 

V(O)-[Zi(O)+Z2(O)+ +Zm(O)II m=[(r- 1)/2]. Then for h >0 small 

enough, the approximate solution u h(t) satisfies 

(3.12) lu(xi, t) - u (x, t)l < C(u)h 2r-2 i= 1, 2, ... , N. 

To illustrate, let r = 4; then m = 1 and u h(0) = V(0) - Z1 (0). The cal- 
culation of u (0) requires three projections V(0), (ZO)t(0), and Z1(0) , where 
(Z0)t(0) = ut(0) - Vt(0) and Vt(O) is a solution of 

h hi h 0 
ao(Vt(0) aV) = (Gu,t(0) - 6u(0)u,(0) v V E V h 

The extra cost spent on calculating Vt(0) and Z1 (0) will be compensated by a 
convergence rate of order O(h 6). 

Now we sketch the proof of Theorem 4. 
Let Z(t) = Z0 Zj(t) and Wh(t) = wh(t) - E'l Zj(t). Then 

e(t) = u(t) - u (t) = Zo(t) + Wh(t) = Z(t) + W (t), 
where WJ'(t), Wh(t) E Vh . It is not difficult to see that WJ (t) and the sum of 
Z1(t), j = 1, 2, ... , m, satisfy respectively the following two equations, 

-(G(W) )(- 6uWy, v ) + ao(Wh v ) = (GZo - 6uZo + 3e , v ) 
and 

m ~~m 
(G ( Zj) 6u E Zi , vh) + ao ( zi , v h 

= (GZo -uZ )-(j=1 V) 

-(GZ(1)-uZ h )(GZ(l? -6uZm5v h 
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Thus, by subtraction we derive an equation for Wh(t), 

(3.13) -(G(Wh)I) -6uWh, vh) + ao(W v ) (GZ() - 6uZm + 3e2,v ). 
h h~~~~~~ 

By the assumption on u (0), we have Wh(0) = 0. 
The proof of (3.12) consists of estimating Z(t) and Wh(t). 

Lemma 2. Let s > -1 and k, j > 0 be integers such that 2j + s < r - 2. Then 

(3.14) ||(k)(t| < ( r+2 +s, <t<T 

(3.15) IZj(x1, t)l < C(u)h 2-, j = 1,2, ...,m; i= 1, 2, ..., N. 

These estimates may be proved by an argument as in [2] or [3], with some 
obvious changes. 

The next step is to show 

1Wh t)2r-2 (3.16) 11W (t)1 < C(u)h- 0 < t < T. 

Then the proof of (3.12) will be completed by (3.4), (3.15), and (3.16). We first 
choose vh = (Wh)t in (3.13) to obtain 

I d h 2 = d h hh h yjdIIJY1II -3d(uW , W )+3(utWh, wh) 

(3.17) + d-(GZ(') - 6uZ 
dt m m,W 

-G (2)-6u(1 - 6uZ, Wh) + 3(e2, (Wh)t). 

In addition to (3.17), by choosing vh = POG Wh in (3.13) and integrating this 
equation from 0 to t, we get 

IIPOGW (t) 1I 

(3.18) ? cf' (IIwh(s)II + <IIZ,(s)II- + IIe(s)II2IIe(s)IIr) ds. 
o\ ~~~k=OI 

h For lack of available bounds for (W )t and et, we treat the nonlinear term 

3(e 2, (Wh)t) of (3.17) in the following way: 

3(e2, (Wh )t) = 3(Z2 + 2Z Wh + (Wh )2 (Wh)t) 
d [3(Z2 Wh) + 3(ZWh wh) + ((Wh), 1)] 

-dt 

-6(ZZt, W)-3(Zt h W/h 

As in the proof of Theorem 3, we may assume 11 Wh (t) jj ? 1, 0 < t < T; then 
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I((W (t))3, 1)1 < CIIWh(t)II . Integrating (3.17), we obtain 

h 2 +| W (t)|12 + |Z(k) 2 2 

k=O 

(3.19) [Wh (S) + (k) 2 

+ IIZ(S)112IIZ(1)()II2] ds} 

where I(Z(k)Wh, Wh)I ? cIw , k = 0, 1, are implicitly used. Lemma 2 

tells' us that IIZ(k)(t)II1 < Ch2r-2 and IIZ(k)(t)II, < Chr-s, for k = 0, 1,2, 
s = 0 1, and 0< t < T. Thus, by (3.19), 

(3.20) 1W4 <(t)112 < C h + + wh)II }ds 

Since [9] IIe(t)II_ < Chr-s, s = 0, 1, and 11(I - PO)GW (t)II < Chl 2IWh(t)I_1 
we have by (3.18) 

(3.21) IIGWh (t)112 < C {h4IIWh(t)112 +h 2(2r-2)+ ft IIWh(s)II2ds} 

Similar to the proof of (3.1 1), when h > 0 is small enough, the desired estimate 
(3.16) can be derived from (3.20), (3.21), and Gronwall's lemma. Thus, the 
proof of Theorem 4 is complete. 

4. NUMERICAL RESULTS OF SIMULATING 1-SOLITARY WAVES 

A numerical experiment is performed for the following solitary wave of (P) 
with initial data: 

uo(x) = -(3d 2 )[I + q(x)], 0 < x< 1, 

q(x) = qo + asech 2(al6d2)12(x - 0.5) 

qo = -2d(6a) 1/2tanh(a/24d2) 1/2 

2 - where a = 0.2 and d = 102 . Here, uo(x) is extended as a 1-periodic function 
to the whole real axis, and we denote the corresponding solution of (P) by 

2 
U(X, t); then q(x, s) = -1 - 3d u(x, 2d2s) solves the following equation: 

qs +(I +q)qx+ Id r2qxx 
= 0 

The solitary wave u(x, t) is simulated by means of the method (Ph) with 
r = 2 and uniform mesh xj = Ih, lh = 1/47, while the approximate solution 

u (t) is a piecewise linear function. Let {qj(x); j = 1, 2, ... , 47} be the basis 
of the subspace Vh , and 

47 
h 

u (X, t) = uj (t)qj (x). 

j=l 
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Then it can be seen that {uj(t); j = 1, 2, ... , 47} is the solution of the system 
of ordinary differential equations 

47 du. 1 1 2 2 2 i d h3(ui 2ui + ui+) + h 6u2 + 

(4.1) 47 
1 47 

2 + 
+ 2h (ui-lui + uiui+ ) - (uj + uiuj+l + ) = 0, 

j=1 

where aij = (qj, Gqi)/h2, and by the periodicity, u0 = U47, U1 = U48. 
We choose the time step At = 3.125 x 10-7 and discretize (4.1) in the time 

variable by the midpoint rule; then a fully discrete scheme for (P) is obtained, 
namely 

47 un+1 -fnlni+ 

Ea Fi i = I ~~~~~~~1 2, . 47; (4.2) At (un+l+un) 

n=O0, 1, .... 

where 

Fi(v) = I - 2vi + vi+1) - 4h (vi2_ + 6v2 + Vi+,) 

47 
7 (v vi + V1V1+1) + 1(V2 + V v + v 

2 

j=1 

As pointed out by Feng Kang in [4], the midpoint rule (i.e., the centered im- 
plicit Euler scheme) is a symplectic scheme, which behaves very well as far as 
preserving conservation laws is concerned. 

Table 1 indicates the ability of scheme (4.2) to preserve the conservation laws 
Ii = const, i = 0, 1, 2, when this scheme is used to simulate the solitary waves 
of (P). 

Figures 1-3 exhibit the shapes of solitary waves q(x, s) calculated by scheme 
(4.2) at time steps n = 0, 30, 60, respectively. 

TABLE 1 
Values of Ii, i = O, 1, 2, at various time steps 

n I I(u) I(u) I2(U) 

0 -3333.33333 11137605.2 -373082079 x 102 
30 T -3333-33333 1 11137605.0 -373082041 x 102 

60 -3333.33448 11137624.0 -373082365 x 102 

90 -3333.33206 11138221.0 -373081466 x 102 

140 -3333.33251 11138159.6 -373081527 x 102 

190 -3333.33141 11138299.3 -373081693 x 102 
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FIGURE 1 
The shape of solitary wave q(x, s) at time step n = 0 

2 ~~30 35 4 

FIGURE 2 

The shape of solitary wave q(x, s) at time step n = 30 

40 45 50 -- 55 

FIGURE 3 

The shape of solitary wave q(x, s) at time step n = 60 

BIBLIOGRAPHY 

1. V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, 1978. 

2. D. N. Arnold and R. Winther, A superconvergent finite element methodfor the Korteweg-de 
Vries equation, Math. Comp. 38 (1982), 23-36. 

3. J. Douglas, Jr., T. Dupont, and M. F. Wheeler, A quasi-projection analysis of Galerkin 
methods for parabolic and hyperbolic equations, Math. Comp. 32 (1978), 345-362. 



620 MINGYOU HUANG 

4. Feng Kang, On difference schemes and symplectic geometry, Proc. 1984 Beijing Sympo- 
sium on Differential Geometry and Differential Equations (Feng Kang, ed.), Science Press, 
Beijing, 1985, pp. 42-58. 

5. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure 
Appl. Math. 21 (1968), 467-490. 

6. V. Thomee, Negative norm estimates and superconvergence in Galerkin methodsfor parabolic 
problems, Math. Comp. 34 (1980), 93-113. 

7. A. C. Vliegenthart, On finite difference methods for the Korteweg-de Vries equation, J. Engrg. 
Math. 5 (1971), 137-155. 

8. L. B. Wahlbin, A dissipative Galerkin methodfor the numerical solution offirst order hyper- 
bolic equations, Mathematical Aspects of Finite Element Methods in P.D.E.s (C. de Boor, 
ed.), 1974. 

9. R. Winther, A conservative finite element method for the Korteweg-de Vries equation, Math. 
Comp. 34 (1980), 23-43. 

DEPARTMENT OF MATHEMATICS, JILIN UNIVERSITY, CHANGCHUN 130023, PEOPLE'S REPUBLIC 

OF CHINA 


